skip to main content


Search for: All records

Creators/Authors contains: "Wan, Chengzhang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Electrocatalytic hydrogen evolution reaction (HER) is critical for green hydrogen generation and exhibits distinct pH-dependent kinetics that have been elusive to understand. A molecular-level understanding of the electrochemical interfaces is essential for developing more efficient electrochemical processes. Here we exploit an exclusively surface-specific electrical transport spectroscopy (ETS) approach to probe the Pt-surface water protonation status and experimentally determine the surface hydronium pK a = 4.3. Quantum mechanics (QM) and reactive dynamics using a reactive force field (ReaxFF) molecular dynamics (RMD) calculations confirm the enrichment of hydroniums (H 3 O + * ) near Pt surface and predict a surface hydronium pK a of 2.5 to 4.4, corroborating the experimental results. Importantly, the observed Pt-surface hydronium pK a correlates well with the pH-dependent HER kinetics, with the protonated surface state at lower pH favoring fast Tafel kinetics with a Tafel slope of 30 mV per decade and the deprotonated surface state at higher pH following Volmer-step limited kinetics with a much higher Tafel slope of 120 mV per decade, offering a robust and precise interpretation of the pH-dependent HER kinetics. These insights may help design improved electrocatalysts for renewable energy conversion. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Alkaline direct alcohol fuel cells (ADAFCs) represent an attractive alternative to hydrogen fuel cells for the more convenient storage, transportation, and lower cost of alcohols (e.g., methanol and ethanol) when compared with compressed hydrogen. However, the anode alcohol oxidation reaction (AOR) is generally plagued with high overpotential and sluggish kinetics, and often requires noble metal‐based electrocatalysts to accelerate the reaction kinetics. To this end, the development of efficient AOR electrocatalysts with high mass activity (MA), high durability, high Faradaic efficiency (FE), and low overpotential is central for realizing practical ADAFCs. Here, in this minireview, a brief introduction of the fundamental challenges associated with AOR in alkaline electrolyte, the key performance metrics, and the evaluation protocols for benchmarking AOR electrocatalysts are presented, followed by a summary of the recent advances in the noble‐metal based AOR electrocatalysts (e.g., Pt, Pd, and Rh) with an emphasis on the design criteria for improving the specific activity and electrochemical surface area to ultimately deliver high MA while at the same time ensuring long term durability. The strategies to enhance FE and lower overpotential will also be discussed. Last, it is concluded with a brief perspective on the key challenges and future opportunities.

     
    more » « less
  4. Abstract

    Fuel cells are highly attractive for direct chemical‐to‐electrical energy conversion and represent the ultimate mobile power supply solution. However, presently, fuel cells are limited by the sluggish kinetics of the cathodic oxygen reduction reaction (ORR), which requires the use of Pt as a catalyst, thus significantly increasing the overall cost of the cells. Recently, nonprecious metal single‐atom catalysts (SACs) with high ORR activity under both acidic and alkaline conditions have been recognized as promising cost‐effective alternatives to replace Pt in fuel cells. Considerable efforts have been devoted to further improving the ORR activity of SACs, including tailoring the coordination structure of the metal centers, enriching the concentration of the metal centers, and engineering the electronic structure and porosity of the substrate. Herein, a brief introduction to fuel cells and fundamentals of the ORR parameters of SACs and the origin of their high activity is provided, followed by a detailed review of the recently developed strategies used to optimize the ORR activity of SACs in both rotating disk electrode and membrane electrode assembly tests. Remarks and perspectives on the remaining challenges and future directions of SACs for the development of commercial fuel cells are also presented.

     
    more » « less